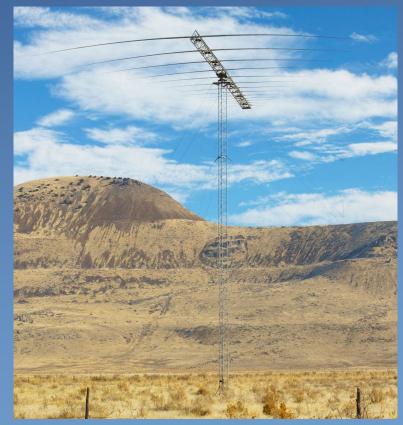
The Northern Utah WebSDR and the WebSDR Project

A free-to-use, web-accessible shared receiver resource

Northern Utah WebSDR: sdrutah.org

WebSDR Project: websdr.org


The Northern Utah WebSDR Located west of Corrine, Utah, at what had been an abandoned HF research site.

Two 80 foot towers with log-periodic beams installed in 1973, apparently for research in data transmission via HF.

• Site was abandoned in the 1980s.

 In 1993, the site was reactivated. A third antenna was installed – an omnidirectional logperiodic antenna. Used for ionospheric research – ("lononsonde" or "Chirsounder").

KA7OEI

 In about 2006, the west-most tower/beam fell in a wind storm after a guy wire deadman failure leaving only an east-pointing beam.

 Sometime around 2008 the funding for the chirpsounding research stopped and the site and its equipment was abandoned.

- In 2017, Michael, KC0JRE, became aware of the site. Subsequent negotiations allowed its continued use as a shared resource.
- It was eventually decided that a receive-only configuration would offer the most benefit for the greatest number of people in the form of a WebSDR system.

- In late February, 2018 after negotiation with the utility and rework of the power system, commercial power was restored to the site.
- On February 28, 2018, a wireless Internet connection was established and the first phase of WebSDR equipment installation was completed.

The Northern Utah WebSDR Main Antenna

 At present, only one antenna is being used for HF reception:

The TCI 530 "omnidirectional" log-periodic antenna.

The Northern Utah WebSDR Main Antenna TCI-530 Quick specs:

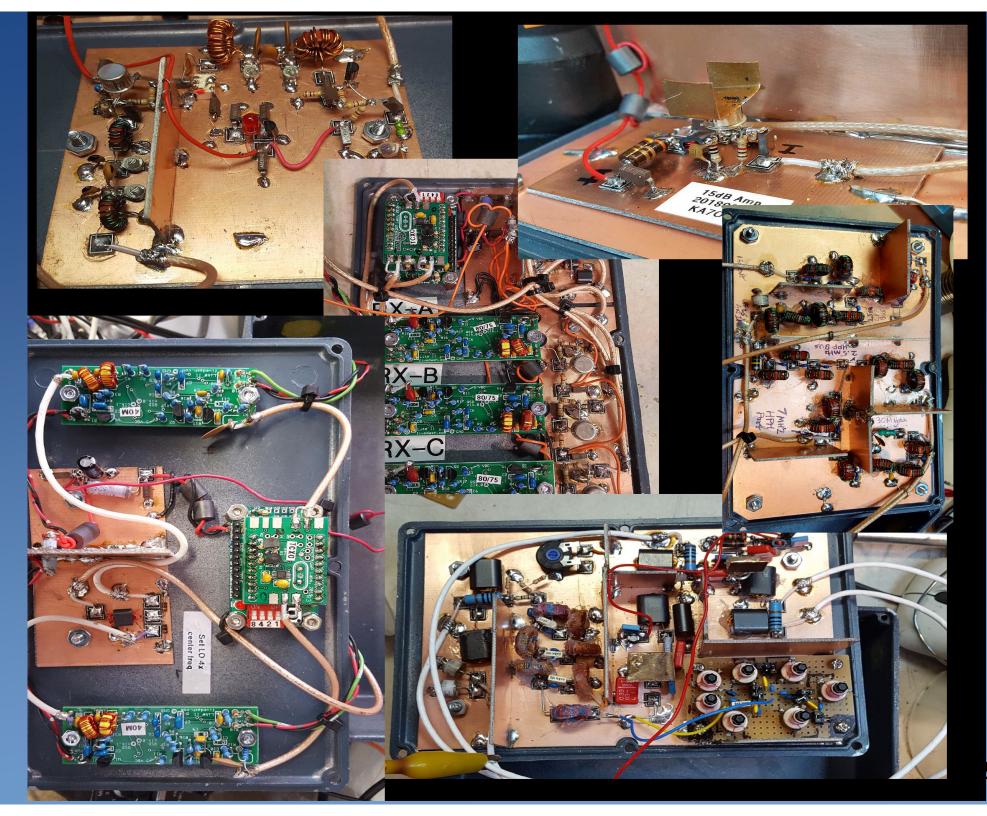
- 92' High with a 250' radius footprint
- Transmit coverage from 3.0 through 30 MHz (VSWR <=2.0:1)
- Usable on receive down to about 400 kHz
- Polarization: Mostly horizontal at higher angles, mostly circular at lower angles in its design range

The Northern Utah WebSDR Main Antenna TCI-530 Quick specs:

• A complicated maze of wires.

Lots and lots of wires!

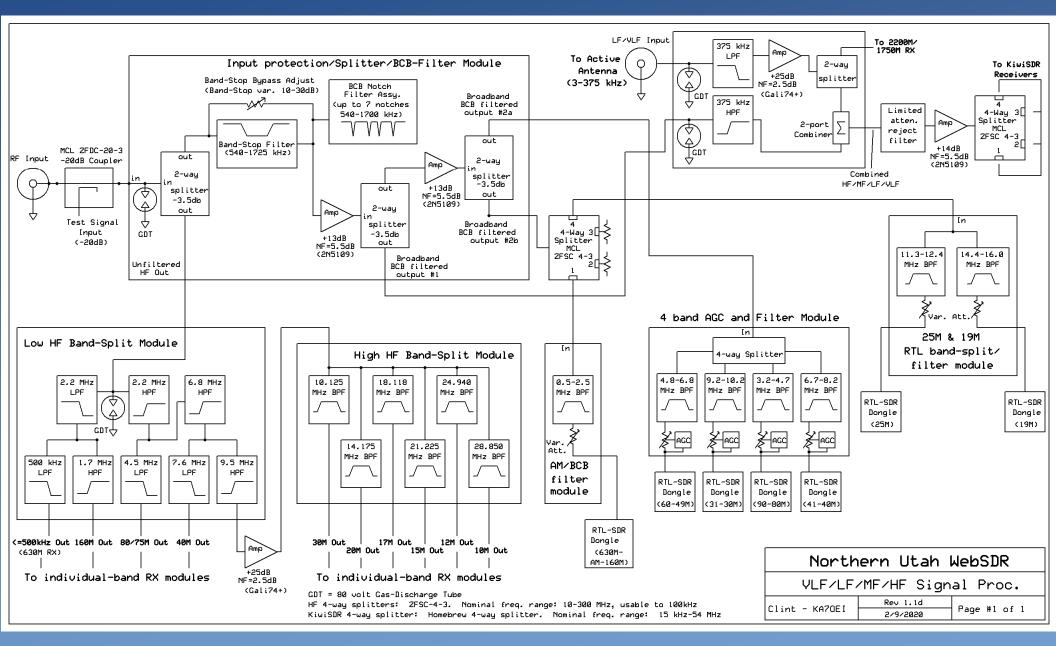
The Northern Utah WebSDR



The Northern Utah WebSDR How it all goes together: RF Distribution

One antenna, many receivers!

 At least 18 receiver modules for all covered LF/MF/HF "bands" (plus some "wideband" receivers)



The Northern Utah WebSDR How it all goes together: RF Distribution

- Complex array of RF modules required to accommodate both wideband and narrowband receivers
- Good filtering is required to attenuate the (very strong!) signals from some local AM broadcast stations.

The Northern Utah WebSDR

KA7OEI

The Northern Utah WebSDR Evolving over time

Originally (2/28/18):

- 1 Server
- 160, 75*, 60 and 40 meter amateur plus the AM broadcast, 120 and 60 meter Shortwave Broadcast bands

* Partial coverage

KA7OEI

The Northern Utah WebSDR Evolving over time

Now :

- 3 Servers
- Coverage on 2200, 630, 160, 80/75, 60, 40, 30, 20, 17, 15, 12, 10, 6 and 2 meter amateur bands plus the AM broadcast and the 120, 90, 60, 49, 41, 31, 25, 19 and 13 meter SW bands

The Northern Utah WebSDR Evolving over time

Now :

- 3 Servers
- Coverage on 2200, 630, 160, 80/75, 60, 40, 30, 20, 17, 15, 12, 10, 6 and 2 meter amateur bands plus the AM broadcast and the 120, 90, 60, 49, 41, 31, 25, 19 and 13 meter SW bands
- WSPRnet coverage on all LF, MF and HF bands

The WebSDR Project Brief system overview:

- Linux-based: Typically Debian or Ubuntu
- Software is not open-source, but is free for anyone "serious" about putting together a decent system
- Hardware: Binaries for PC (32 and 64 bit) and Rasperry Pi

 You need only a device with a modern web browser to listen (computer, phone, tablet)

The WebSDR Project Brief system overview:

Acquisition hardware (receivers):

- High Performance: Sound card + "SoftRock" type receiver
 - 16 Bits A/D, up to 192kHz of spectrum per device
- Low Performance: RTL-SDR USB "dongle"
 - 8 bits AD, up to 2 MHz of spectrum per device

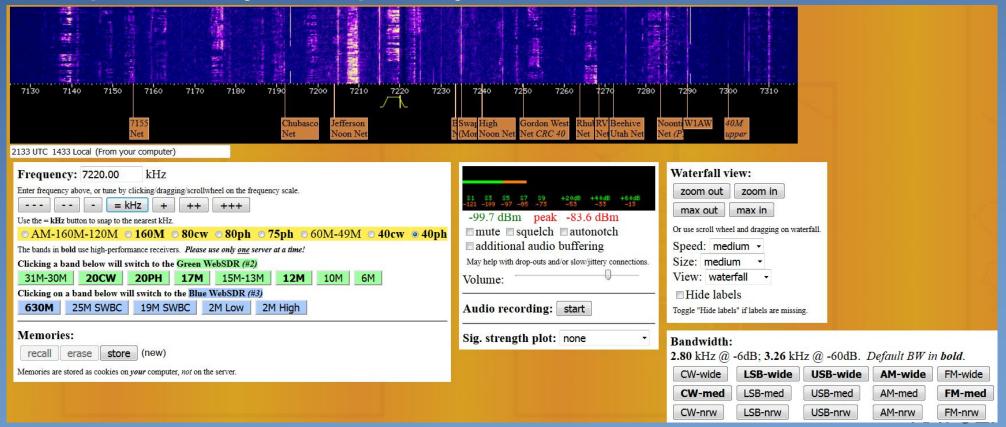
The WebSDR Project Origins

- Main web site: websdr.org
- List of active WebSDR servers around the world listed in approximate order of "busy-ness".
- There are WebSDRs that cover from *(practically)* DC to the 10 GHz band.

The WebSDR Project

websdr.org

- Software written by Dr. P.T. de Boer of the University of Twente in the Netherlands.
- An outgrowth of a 2007 project to make the Dwingeloo 25 Meter radio telescope in the
 Netherlands available to other radio amateurs via the web.
- Announced in April 2008 with beta testing beginning in November 2008.



The WebSDR Project As of now, there are about 170 servers active worldwide. Map: websdr.org

The Northern Utah WebSDR and the WebSDR Project

Each user has their own **virtual** receiver, able to tune independently - frequency and mode.

The Northern Utah WebSDR and the WebSDR Project

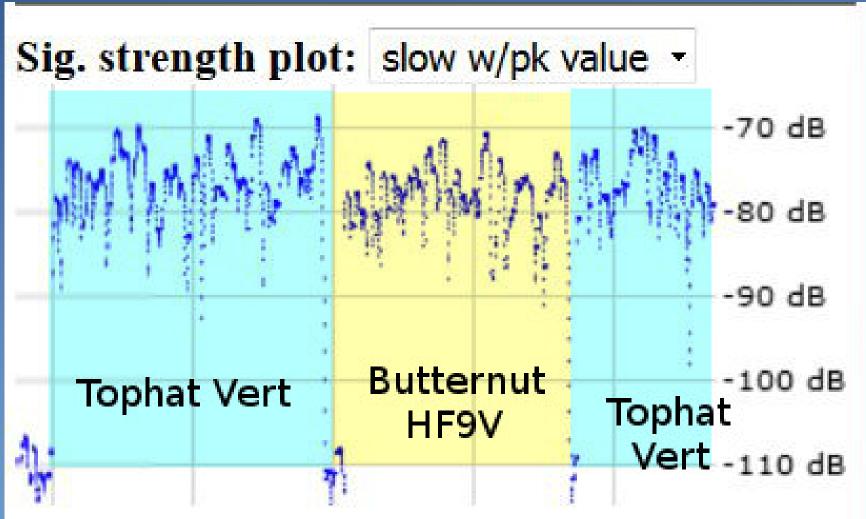
- A web-accessible remote receiver usable by many people at once.
 - The number of users at the Northern Utah WebSDR occasionally exceeds 130 across the three servers!

Most common reasons our users say that they use a WebSDR

1- As a general-purpose remote receiver Easy to use – just a browser.

- 2- My QTH is too %#^* noisy! Power line noise, noise from own/neigbors photovoltaic system, switcing supply noise.
- 3- I don't have my own HF receiver set up.4- Spotting DX

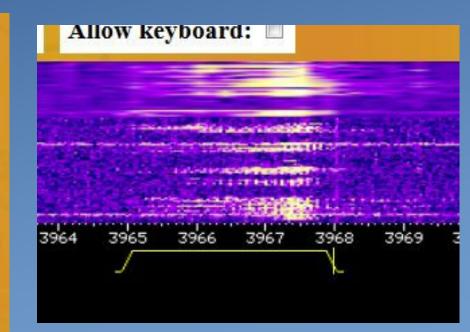
Other reasons one might use a WebSDR


It can often hear stations that you can't.

(Because of propagation, location, local noise, etc.)

- Learn about how the HF bands propagate
- Compare/test antennas

Reasons that one might use a WebSDR

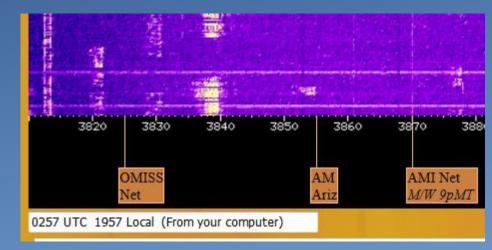

Testing antennas!

KA7OEI

Adjustable-bandwidth receive filters

CW-wide	LSB-wide	USB-wide	AM-wide	FM-wide
CW-med	LSB-med	USB-med	AM-med	FM-med
CW-nrw	LSB-nrw	USB-nrw	AM-nrw	FM-nrw
PassBand T	uning (PBT):			
<< wider >> >>narrower<<		wer<<]	(F shift <<	>> IF shift >>
<< low PBT >> low PBT		BT high	PBT <<	high PBT >>

Record off the air signals
Check your own transmit audio – see if it sounds right.

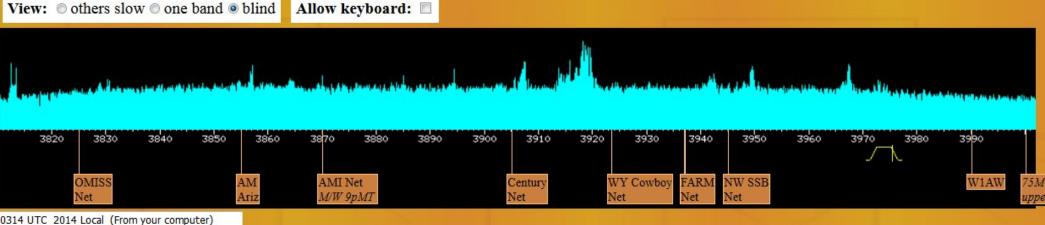

- Help diagnose others' signals.
- For "posterity"?

Volume:		
Audio recording: [start	
Sig. strength plot:	none 🔻	
		(

On-screen tags – including custom

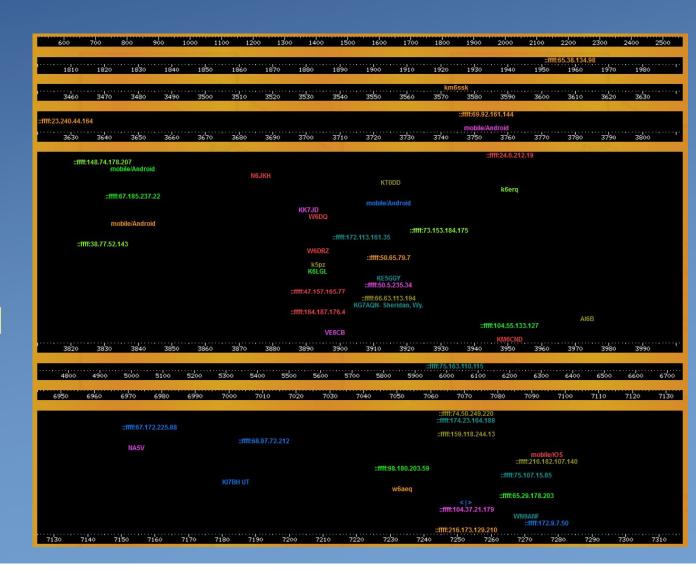
- Click on it to jump to that frequency and mode.
- Many popular nets

- Radio stations, "interesting" frequencies
- Just 'cuz...


KA7OEI

Spectrum display

- Size and speed of the "waterfall" can be adjusted
 - Can be made more/less sensitive


zoom out	zoom in
max out	max in
Or use scroll whee	el and dragging on waterfal
Speed: med	lium →
Size: mediu	im 🝷
View: wate	rfall 🔻

Can also select a flat "spectrum" display

See other users:

 Name or call is (optionally) entered above waterfall – saved in a cookie for next time

Dealing with slower network connections:

Amount of audio buffering can be adjusted:

81 83 85 87 89 -121 -109 -97 -85 -73	+20dB +40dB +60dB -53 -33 -13				
-85.9 dBm peak -68.9 dBm mute squelch autonotch					
Audio buffering:	normal 👻				
May help with drop-outs	normal				
Volume:	more (+0.5sec)				
Audio recording	even more (+1sec) ludicrous (+2sec)				

KA7OEI

The WebSDR Project and The Northern Utah WebSDR What else is up there?

KiwiSDR receivers

- Cover "0-30" MHz
- Limited number of users
- One of the more prolific WSPRNet spot reporters in the world – typically in the top 5 in the U.S., 15 in the world
- Making HF noise measurements that contribute to
- ionospheric research

KA7OE

What else is up there?

- That "other" antenna
- Weather Station
 - You, too, can see how nice it is to **not** be there!

A few commonly-asked questions:

- What browsers work?
- Will you make it so we can transmit?
- How about a rotatable antenna?

A few commonly-asked questions:

• How can you help support this system?

 PayPal, Check, Cash, Money order, gold bullion

• The Northern Utah WebSDR is an IRS 501c(3) non-profit organization (*The Utah SDR Group*)

The WebSDR Project Other Questions? sdrutah.org Or search for "Utah WebSDR"

KA7OEI

The WebSDR Project

Thank you! sdrutah.org Or search for "Utah WebSDR"